On the number of rectangulations of a planar point set
نویسندگان
چکیده
We investigate the number of different ways in which a rectangle containing a set of n noncorectilinear points can be partitioned into smaller rectangles by n (non-intersecting) segments, such that every point lies on a segment. We show that when the relative order of the points forms a separable permutation, the number of rectangulations is exactly the (n+ 1)st Baxter number. We also show that no matter what the order of the points is, the number of guillotine rectangulations is always the nth Schröder number, and the total number of rectangulations is O(20/n).
منابع مشابه
A Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
متن کاملGeneric rectangulations
A rectangulation is a tiling of a rectangle by a finite number of rectangles. The rectangulation is called generic if no four of its rectangles share a single corner. We initiate the enumeration of generic rectangulations up to combinatorial equivalence by establishing an explicit bijection between generic rectangulations and a set of permutations defined by a pattern-avoidance condition analog...
متن کاملSOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH
In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...
متن کاملAn Upper Bound on the Number of Rectangulations of a Point Set
We consider the number of different ways to divide a rectangle containing n noncorectilinear points into smaller rectangles by n non-intersecting axis-parallel segments, such that every point is on a segment. Using a novel counting technique of Santos and Seidel [12], we show an upper bound of O(20/n) on this number.
متن کاملThe Flip Diameter of Rectangulations and Convex Subdivisions
We study the configuration space of rectangulations and convex subdivisions of n points in the plane. It is shown that a sequence of O(n log n) elementary flip and rotate operations can transform any rectangulation to any other rectangulation on the same set of n points. This bound is the best possible for some point sets, while Θ(n) operations are sufficient and necessary for others. Some of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 113 شماره
صفحات -
تاریخ انتشار 2006